CleanRL:高级 PPO

本教程展示了如何在 PPO 智能体上进行训练,并应用于 Atari 环境(Parallel)。这是一个完整的训练脚本,包括 CLI、日志记录以及与 TensorBoardWandB 的集成,用于实验跟踪。

本教程镜像自 CleanRL 的示例。完整的文档和实验结果可以在 https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_pettingzoo_ma_ataripy 找到。

环境设置

要按照本教程进行操作,你需要安装下方所示的依赖项。建议使用新创建的虚拟环境以避免依赖冲突。

pettingzoo[butterfly,atari,testing]>=1.24.0
SuperSuit>=3.9.0
tensorboard>=2.11.2
torch>=1.13.1

然后,使用 AutoROM 安装 ROM,或者使用 rom_path 参数指定你的 Atari ROM 路径(参见 Common Parameters)。

代码

以下代码应该可以无障碍运行。注释旨在帮助你理解如何将 PettingZoo 与 CleanRL 一起使用。如果你有任何问题,请随时在 Discord 服务器中提问,或在 CleanRL 的 GitHub 上创建 issue。

"""Advanced training script adapted from CleanRL's repository: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_pettingzoo_ma_atari.py.

This is a full training script including CLI, logging and integration with TensorBoard and WandB for experiment tracking.

Full documentation and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_pettingzoo_ma_ataripy.

Note: default value for total-timesteps has been changed from 2 million to 8000, for easier testing.

Authors: Costa (https://github.com/vwxyzjn), Elliot (https://github.com/elliottower)
"""

# flake8: noqa

import argparse
import importlib
import os
import random
import time
from distutils.util import strtobool

import gymnasium as gym
import numpy as np
import supersuit as ss
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter


def parse_args():
    # fmt: off
    parser = argparse.ArgumentParser()
    parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
        help="the name of this experiment")
    parser.add_argument("--seed", type=int, default=1,
        help="seed of the experiment")
    parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, `torch.backends.cudnn.deterministic=False`")
    parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, cuda will be enabled by default")
    parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="if toggled, this experiment will be tracked with Weights and Biases")
    parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
        help="the wandb's project name")
    parser.add_argument("--wandb-entity", type=str, default=None,
        help="the entity (team) of wandb's project")
    parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to capture videos of the agent performances (check out `videos` folder)")

    # Algorithm specific arguments
    parser.add_argument("--env-id", type=str, default="pong_v3",
        help="the id of the environment")
    parser.add_argument("--total-timesteps", type=int, default=12000,  # CleanRL default: 2000000
        help="total timesteps of the experiments")
    parser.add_argument("--learning-rate", type=float, default=2.5e-4,
        help="the learning rate of the optimizer")
    parser.add_argument("--num-envs", type=int, default=16,
        help="the number of parallel game environments")
    parser.add_argument("--num-steps", type=int, default=128,
        help="the number of steps to run in each environment per policy rollout")
    parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="Toggle learning rate annealing for policy and value networks")
    parser.add_argument("--gamma", type=float, default=0.99,
        help="the discount factor gamma")
    parser.add_argument("--gae-lambda", type=float, default=0.95,
        help="the lambda for the general advantage estimation")
    parser.add_argument("--num-minibatches", type=int, default=4,
        help="the number of mini-batches")
    parser.add_argument("--update-epochs", type=int, default=4,
        help="the K epochs to update the policy")
    parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="Toggles advantages normalization")
    parser.add_argument("--clip-coef", type=float, default=0.1,
        help="the surrogate clipping coefficient")
    parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
    parser.add_argument("--ent-coef", type=float, default=0.01,
        help="coefficient of the entropy")
    parser.add_argument("--vf-coef", type=float, default=0.5,
        help="coefficient of the value function")
    parser.add_argument("--max-grad-norm", type=float, default=0.5,
        help="the maximum norm for the gradient clipping")
    parser.add_argument("--target-kl", type=float, default=None,
        help="the target KL divergence threshold")
    args = parser.parse_args()
    args.batch_size = int(args.num_envs * args.num_steps)
    args.minibatch_size = int(args.batch_size // args.num_minibatches)
    # fmt: on
    return args


def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
    torch.nn.init.orthogonal_(layer.weight, std)
    torch.nn.init.constant_(layer.bias, bias_const)
    return layer


class Agent(nn.Module):
    def __init__(self, envs):
        super().__init__()
        self.network = nn.Sequential(
            layer_init(nn.Conv2d(6, 32, 8, stride=4)),
            nn.ReLU(),
            layer_init(nn.Conv2d(32, 64, 4, stride=2)),
            nn.ReLU(),
            layer_init(nn.Conv2d(64, 64, 3, stride=1)),
            nn.ReLU(),
            nn.Flatten(),
            layer_init(nn.Linear(64 * 7 * 7, 512)),
            nn.ReLU(),
        )
        self.actor = layer_init(nn.Linear(512, envs.single_action_space.n), std=0.01)
        self.critic = layer_init(nn.Linear(512, 1), std=1)

    def get_value(self, x):
        x = x.clone()
        x[:, :, :, [0, 1, 2, 3]] /= 255.0
        return self.critic(self.network(x.permute((0, 3, 1, 2))))

    def get_action_and_value(self, x, action=None):
        x = x.clone()
        x[:, :, :, [0, 1, 2, 3]] /= 255.0
        hidden = self.network(x.permute((0, 3, 1, 2)))
        logits = self.actor(hidden)
        probs = Categorical(logits=logits)
        if action is None:
            action = probs.sample()
        return action, probs.log_prob(action), probs.entropy(), self.critic(hidden)


if __name__ == "__main__":
    # --num-steps 32 --num-envs 6 --total-timesteps 256
    args = parse_args()
    print(args)
    run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
    if args.track:
        import wandb

        wandb.init(
            project=args.wandb_project_name,
            entity=args.wandb_entity,
            sync_tensorboard=True,
            config=vars(args),
            name=run_name,
            monitor_gym=True,
            save_code=True,
        )
    writer = SummaryWriter(f"runs/{run_name}")
    writer.add_text(
        "hyperparameters",
        "|param|value|\n|-|-|\n%s"
        % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
    )

    # TRY NOT TO MODIFY: seeding
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.deterministic = args.torch_deterministic

    device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

    # env setup
    env = importlib.import_module(f"pettingzoo.atari.{args.env_id}").parallel_env()
    env = ss.max_observation_v0(env, 2)
    env = ss.frame_skip_v0(env, 4)
    env = ss.clip_reward_v0(env, lower_bound=-1, upper_bound=1)
    env = ss.color_reduction_v0(env, mode="B")
    env = ss.resize_v1(env, x_size=84, y_size=84)
    env = ss.frame_stack_v1(env, 4)
    env = ss.agent_indicator_v0(env, type_only=False)
    env = ss.pettingzoo_env_to_vec_env_v1(env)
    envs = ss.concat_vec_envs_v1(
        env, args.num_envs // 2, num_cpus=0, base_class="gymnasium"
    )
    envs.single_observation_space = envs.observation_space
    envs.single_action_space = envs.action_space
    envs.is_vector_env = True
    if args.capture_video:
        envs = gym.wrappers.RecordVideo(envs, f"videos/{run_name}")
    assert isinstance(
        envs.single_action_space, gym.spaces.Discrete
    ), "only discrete action space is supported"

    agent = Agent(envs).to(device)
    optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)

    # ALGO Logic: Storage setup
    obs = torch.zeros(
        (args.num_steps, args.num_envs) + envs.single_observation_space.shape
    ).to(device)
    actions = torch.zeros(
        (args.num_steps, args.num_envs) + envs.single_action_space.shape
    ).to(device)
    logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
    rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
    terminations = torch.zeros((args.num_steps, args.num_envs)).to(device)
    truncations = torch.zeros((args.num_steps, args.num_envs)).to(device)
    values = torch.zeros((args.num_steps, args.num_envs)).to(device)

    # TRY NOT TO MODIFY: start the game
    global_step = 0
    start_time = time.time()
    next_obs, info = envs.reset(seed=args.seed)
    next_obs = torch.Tensor(next_obs).to(device)
    next_termination = torch.zeros(args.num_envs).to(device)
    next_truncation = torch.zeros(args.num_envs).to(device)
    num_updates = args.total_timesteps // args.batch_size

    for update in range(1, num_updates + 1):
        # Annealing the rate if instructed to do so.
        if args.anneal_lr:
            frac = 1.0 - (update - 1.0) / num_updates
            lrnow = frac * args.learning_rate
            optimizer.param_groups[0]["lr"] = lrnow

        for step in range(0, args.num_steps):
            global_step += 1 * args.num_envs
            obs[step] = next_obs
            terminations[step] = next_termination
            truncations[step] = next_truncation

            # ALGO LOGIC: action logic
            with torch.no_grad():
                action, logprob, _, value = agent.get_action_and_value(next_obs)
                values[step] = value.flatten()
            actions[step] = action
            logprobs[step] = logprob

            # TRY NOT TO MODIFY: execute the game and log data.
            next_obs, reward, termination, truncation, info = envs.step(
                action.cpu().numpy()
            )
            rewards[step] = torch.tensor(reward).to(device).view(-1)
            next_obs, next_termination, next_truncation = (
                torch.Tensor(next_obs).to(device),
                torch.Tensor(termination).to(device),
                torch.Tensor(truncation).to(device),
            )

            # TODO: fix this
            for idx, item in enumerate(info):
                player_idx = idx % 2
                if "episode" in item.keys():
                    print(
                        f"global_step={global_step}, {player_idx}-episodic_return={item['episode']['r']}"
                    )
                    writer.add_scalar(
                        f"charts/episodic_return-player{player_idx}",
                        item["episode"]["r"],
                        global_step,
                    )
                    writer.add_scalar(
                        f"charts/episodic_length-player{player_idx}",
                        item["episode"]["l"],
                        global_step,
                    )

        # bootstrap value if not done
        with torch.no_grad():
            next_value = agent.get_value(next_obs).reshape(1, -1)
            advantages = torch.zeros_like(rewards).to(device)
            lastgaelam = 0
            next_done = torch.maximum(next_termination, next_truncation)
            dones = torch.maximum(terminations, truncations)
            for t in reversed(range(args.num_steps)):
                if t == args.num_steps - 1:
                    nextnonterminal = 1.0 - next_done
                    nextvalues = next_value
                else:
                    nextnonterminal = 1.0 - dones[t + 1]
                    nextvalues = values[t + 1]
                delta = (
                    rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
                )
                advantages[t] = lastgaelam = (
                    delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
                )
            returns = advantages + values

        # flatten the batch
        b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
        b_logprobs = logprobs.reshape(-1)
        b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
        b_advantages = advantages.reshape(-1)
        b_returns = returns.reshape(-1)
        b_values = values.reshape(-1)

        # Optimizing the policy and value network
        b_inds = np.arange(args.batch_size)
        clipfracs = []
        for epoch in range(args.update_epochs):
            np.random.shuffle(b_inds)
            for start in range(0, args.batch_size, args.minibatch_size):
                end = start + args.minibatch_size
                mb_inds = b_inds[start:end]

                _, newlogprob, entropy, newvalue = agent.get_action_and_value(
                    b_obs[mb_inds], b_actions.long()[mb_inds]
                )
                logratio = newlogprob - b_logprobs[mb_inds]
                ratio = logratio.exp()

                with torch.no_grad():
                    # calculate approx_kl http://joschu.net/blog/kl-approx.html
                    old_approx_kl = (-logratio).mean()
                    approx_kl = ((ratio - 1) - logratio).mean()
                    clipfracs += [
                        ((ratio - 1.0).abs() > args.clip_coef).float().mean().item()
                    ]

                mb_advantages = b_advantages[mb_inds]
                if args.norm_adv:
                    mb_advantages = (mb_advantages - mb_advantages.mean()) / (
                        mb_advantages.std() + 1e-8
                    )

                # Policy loss
                pg_loss1 = -mb_advantages * ratio
                pg_loss2 = -mb_advantages * torch.clamp(
                    ratio, 1 - args.clip_coef, 1 + args.clip_coef
                )
                pg_loss = torch.max(pg_loss1, pg_loss2).mean()

                # Value loss
                newvalue = newvalue.view(-1)
                if args.clip_vloss:
                    v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
                    v_clipped = b_values[mb_inds] + torch.clamp(
                        newvalue - b_values[mb_inds],
                        -args.clip_coef,
                        args.clip_coef,
                    )
                    v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
                    v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
                    v_loss = 0.5 * v_loss_max.mean()
                else:
                    v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()

                entropy_loss = entropy.mean()
                loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef

                optimizer.zero_grad()
                loss.backward()
                nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
                optimizer.step()

            if args.target_kl is not None:
                if approx_kl > args.target_kl:
                    break

        y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
        var_y = np.var(y_true)
        explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y

        # TRY NOT TO MODIFY: record rewards for plotting purposes
        writer.add_scalar(
            "charts/learning_rate", optimizer.param_groups[0]["lr"], global_step
        )
        writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
        writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
        writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
        writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
        writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
        writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
        writer.add_scalar("losses/explained_variance", explained_var, global_step)
        print("SPS:", int(global_step / (time.time() - start_time)))
        writer.add_scalar(
            "charts/SPS", int(global_step / (time.time() - start_time)), global_step
        )

    envs.close()
    writer.close()